NOTATION

T, temperature; v, velocity; p, pressure; v, coefficient of kinematic viscosity; 5, coefficient of dynamic
viscosity; x, thermal diffusivity; », thermal conductivity; r, 6, ¢, coordinates; «, bubble radius; A, constant
temperature gradient; u, drift velocity; 2H, average curvature of surface; M, Mx, P, a, dimensionless
parameters of problem; differentiation with respect to the coc_)fdinate 6 is denoted by a prime; P;, Legendre
polynomials of order {; o, coefficient of surface tension; ry, 6;, unit vectors of spherical coordinate system.
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VISCOSITY OF A WATER-FLUIDIZED BED

R. B. Rozenbaum and O. M. Todes UDC 532.529.5

The method of damping of oscillations of a ball submerged in a fluidized bed is used to study the
viscosity of the bed.

The rheological properties of an air-fluidized bed have been studied rather extensively and by different
methods. There are experimental data which we obtained [1, 2] allowing one to draw certain conclusions con-
cerning the dependence of the effective viscosity of the bed on the properties of the solid phase,

To clarify the mechanism of the effective viscosity and the laws of its variation it is necessary to study
beds fluidized by different agents, and therefore it is advisable to make measurements in a bed fluidized by
water. These measurements present definite difficulties, since in its rheological properties a strongly
rarefied bed approaches the properties of the fluidizing agent, the viscosity of which is low. Using the method
- which we developed [3], which provides for the motion of bodies in the bed in the region of small Reynolds

TABLE 1. Characteristics of Substances Used for Calibration

1

-3

0 p-107,1 #-10, N ve10%, |Nexpp-10-%,
Substance, Joat t, °C kg/m® izsec/ exp | 2/ coc |kg/m®
Water at 20 1,0 1,005.10-2! 53,5 0,01 55,5

Aqueous solution of sugar

20 at 21 1,08 1,96.10-2 ¢ 40 0,018 43,20
40 at 20 1,18 6,2.10-%2| 25,8 0,053 30,44
60 at 34 1,29 |27,97-10-2 14 0,217 18,06
60 at 30 . 1,29 133,78.10-2: 13,2 0,262 17,03
60 at 25 1,20 |43,86.10-2 11,0 0,340 14,19
60 at 20 1,29 56,5.102 9,5 0,438 12,25
Glycerin 1,24 3,68 4 2,968 4,9
Castor oil 0,95 9,03 2 9,505 1,90
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Fig. 1 Fig. 2

Fig. 1. Diagram of experimental setup: 1) spring;
2) scale; 3) pointer; 4) cylindrical body; 5) rod; 6)
bed; 7) ball; 8) filter; 9) flowmeter,

Fig. 2. Graph of dependence of 1 on £.

numbers Re, one can reliably determine the viscosity of the bed if the fluidizing agent is air, whose density
po and viscosity p, are low, from the ratio o /poz 10~® m%/sec. For water Hy / P, is an order of magnitude
smaller than for air.

Wishing to make it so that the body (a ball) moving in the bed not only disrupts the structure of the bed
to the minimum but also reacts weakly to the pulsation impacts characteristic of the bed, one must choose
a body of small volume (with a small surface) and large mass. But then because of the high velocity of fall
values of Re < 1 will not be provided and the main condition for the mode of viscous flow will be violated.

Vibrational viscometers [4], in which a flat plate submerged in the medium under study undergoes
harmonic oscillations with a small amplitude under the effect of a harmonic driving force, can be used to
measure the viscosity of true liquids. The quality of the mechanical vibrational system of such instruments
is rather high; moreover, since the amplitude of the vibrations is only several dozen microns, the velocity of
the plate motion is low, the critical Reynolds number is not reached (for a plate Regy = 105), and its vibrations
remain in the viscous region. This system cannot be applied directly for measuring the viscosity of a fluidized
bed because of the considerable intrinsic pulsations of the bed. The method can be modified somewhat, how-
ever.,

Let us assume that an oscillatory system of mass M, consisting of a spring and a thin rod with a ball

of diameter d fastened to it and submerged in a medium of density p and viscosity p, undergoes natural damped
oscillations (Fig. 1). Since it is possible that the mode of oscillations will not be purely viscous, let us analyze
the equation of motion of such a system:

du

'&;“:Fres+Fel- 1)
Allowing not only for the effect of forces of viscous friction, but also for the inertial resistances of the medium
to the established motion, one can set [5]

Fres =— 3ndpy — 0.06 nd*pu ol )

The elastic force is
Fop =— Maodx = — kx. (3)

Equation (1) can thus be rewritten in the form

M —j—;} + 3nduv -+ 0.06 nd?v [0 ] + Mwsx = 0. 4)
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Fig. 3. Graph of dependence of Ny on v (calibration curve): 1) true liquids and solu~

o

Fig. 4

tions; 2) sand (0.3-0.5 mm) fluidized by water. Np. 1073, kg/m?; v, m¥ sec.

Fig. 4. Graph of dependence of v/v, on e: 1) fluidizing agent: water; 2) air; 3) from

Eq. (21).

Since

—_— =,

by dividing (4) by (5) we obtain
dv

M—d; + 0.06 nd% jv| + Me? x — 3audp = 0.

14

In the absence of resistance the system would undergo purely harmonic oscillations, passing through the

equilibrium position with a maximum velocity
ar
Uy = ]// M *o-

(5)

(6)

()

" In reality, the oscillations are damped. As a parameter characterizing the process we choose the number of
oscillations N after which the amplitude X, of the oscillations decreases twofold. Let us return to the initial

equation (6) and convert it to dimensionless form. We designate

r="my X 2 ¥ —q Re,= Undp
Xy xO Um W
We introduce the dimensionless quantity
_ 3ad’x,
9="u
and reduce (6) to the form
dn__F 9 (1:002Re,m)

3 n Re,
Equation (10) must be solved with the initial conditions
=0 at =1

and certain limits of variation of Rey, and Q.

Let us estimate these limits on the basis of the concrete conditions of the experiment,
(Fig. 1) a spring of mass 0.223 kg and elastic coefficient k = 13.75 N/m was fastened rigidly at one end in a
special brace. At the other end of the spring was fastened a pendant consisting of a massive cylindrical body

and a thin brass rod ending in a ball of diameter d = 1.67- 102 m; the mass of the pendant was 0.6855 kg.
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TABLE 2. Viscosity of a Fluidized Sand Bed

Fluidizing agent: water

.10"3 R v - 10% g 10, ’
[% 10 3, ¢ N N‘; 19 N mz/se:: N'Sec/ TI\_
kg/m kg/ m m? o

1,966 0,411 2,0 3,93 3,95 6,39 395

1946 0,423 1.0 7.78 0.92 1.79 92

1,917 0,441 44 8,43 0,84 1,61 84

1,807 0,453 6.2 11,76 0,51 0.97 51

1,862 0,474 9.4 17,50 0.96 0,48 92

1,838 0,489 10,8 19,85 0,18 0,33 18

1,792 0,517 130 | 23130 0,12 0.21 12

1,692 0,578 15.6 | 96,39 0,07 0,12 7

1,582 0645 | 19,0 30,06 0,06 0,09 6

Air
.10

=3 . 4 B ’ N
p-10°7, € uz/lgec ‘ N +sec/ :—
kg/m? m ‘ 2 o
1,373 0,480 2,0 30,2 166
1.312 0,503 21,00 27.5 158
1,278 0.516 205 26.2 154
1,251 0.526 218 27,9 164
1,238 0.531 19.3 239 145
1,132 0.571 17,4 19.7 131
0,932 0,647 15,8 15,7 119

A pointer connected with the system moved relative to a scale in the course of the oscillations. The
system, displaced from the equilibrium position by a distance x; = 4- 10-? m, underwent damped oscillations
with a period T = 1.5 sec. The corresponding estimate of the quantities Q and Rey, under our conditions gives

0.14 << Q<028 3 < Re,, < 3000. (12)

Now let us analyze Eq. (10) for the two extreme cases of motion of the system: a) the vi'scosity of the medium
is high; b) the viscosity of the medium is low,

a) Ifp is high, then one can neglect the term 0.02Ql7n | in comparison with Q/Rep, in (10) and we obtain
the differential equation for damped oscillations. The amplitude of the oscillations decreases by the law
exp [—(Q/2Rem)7] and decreases twofold after a time 74 /2 having undergone 2w N oscillations:

N = Ty/2 _ 1n2-Rem

25 nQ ) . (13)

b) If the viscosity u of the medium is low, then we neglect the term Q/Re,, in (10). Introducing the
designation

n” (14)
B y
and transiorming Eq. (10), we obtain
dy
4 +0.04Qy = — 15

The solution of the nonhomogeneous equation (15) satisfying the initial conditions (y = 0 at ¢ = 1) has the form
25 (25 25 Q ]
—_~~__——+E——(l+——)ex [_ —-l}.

Q{Q Q’P — (& )f (16)

Expanding eQ/25E ) in a series by powers of (Q/25)(¢{ — 1)and being limited to the first three terms of the
series, we can estimate the value of ¢, at which y is reduced to zero (Fig. 2):

1S

3

,=e 7. (17

e
3
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After one full revolution ¢ reaches the value ¢, = e™4Q/% and, consequently, the number N of revolutions after
which the dimensionless amplitude decreases twofold is

_ 25in2

="
It is seen from Eqgs. (13) and (18) that in both extreme cases the quantities N and Q enter into the solution in the
form of a product, with NQ being a function of the Reynolds number when it is small and being independent of
Re when it is large. Without performing the calculations one can in practice construct an experimental cali-
bration curve from observations of the damping of oscillations in liquids whose viscosity and density are known,
Since Q varies in proportion to the density  of the medium, while the Reynolds numbers vary in proportion

to 14, where v is the kinematic viscosity of the medium, it is convenient to construct the calibration curve in
the coordinates Ny—Ilogv.

(18)

Data on the substances used for the calibration are presented in Table 1. The results of the experi-
ments are representied graphically in Fig. 3.

The calibration curve later served for the determination of the viscosity of water-fluidized beds of
granular materials.

A charge of the test material was poured into a column 7.4- 10"% m in diameter. Water was supplied to
the base of the column through a thin metal grid and a layer of felt (the filter) and the bed changed into a
suspended state. The water flow rate was measured with an RS-5 flowmeter. The height of the bed and its
porosity and viscosity varied as a function of the rate of supply of the water. The viscosity was determined
from the number N of oscillations of the pendant in the bed and from the calibration graph (Fig. 3). The re-
sults of the measurement of the viscosity of a bed of sand with a size of 0.3-0.5 mm are presented in Table 2,
Data which we obtained on the viscosity of a sand bed fluidized by air are also presented there for comparison.

The first theoretical work on the determination of the effective viscosity of dilute suspensions was the
study of Einstein [6], who found that the change in the rate of settling of the solid particles can be explained
by an increase in the viscosity p of the suspension in comparison with the viscosity u, of the medium:

pw=p,(14+259), (19)

where Q is the portion of the volume of the suspension occupied by the solid phase. The Einstein equation was
not confirmed experimentally for suspensions in which the concentration of solid particles exceeds 0.05.
Subsequently many authors have proposed equations differing from (19) which are valid for narrow intervals
of particle concentration. Thus, in [7], following an analysis of the experimental data of a number of studies
on the settling of narrow fractions of sand, coal, and others, as well as data on beds fluidized by air and
water, the following equation was proposed for calculating the apparent viscosity of a disperse system:

. Ly o _ 0 2
W P21 o to o (20)

where ;) is considered as the apparent viscosity of the disperse medium,

It follows from (20) that the ratios of the kinematic viscosities of the bed v and the fluidizing agent v,
are determined by the porosity of the bed:
i

el.285-p—2(1—8) (f— D173 "

(21)

IV.—
Vo

On the basis of our experimental data graphs of the dependence of v/v, on ¢ for a sand bed fluidized by
water and air are constructed in Fig. 4 on a semilogarithmic scale. The curve corresponding to (21), which
does not coincide with the experimental graphs, is also plotted there for comparison. From theoretical con-
siderations it actually follows that a proportionality should exist between the kinematic viscosities of the bed
and the fluidizing agent. Since the processes taking place in the bed are nonsteady, however, for appreciable
expansions of the bed the connection between v and v, must evidently be different for the so-called hetero-
geneous fluidization when the fluidizing agent is water and for the heterogeneous fluidization when the fluidizing
agent is air,

NOTATION

M, mass of oscillatory system; d, diameter of ball; p, 4, v, density, dynamic viscosity, and kinematic
viscosity of medium and of fluidized bed; py, g, v, Gensity, dynamic viscosity, and kinematic viscosity of
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fluidizing agent; v, velocity of oscillatory motion of ball; vy,, maximum velocity; t, time of motion; ¥4,
force of resistance; Fgj, elastic force; Re, Reynolds number; Rep,, Reynolds number corresponding to v, ;
wy, frequency of natural undamped oscillations; x, displacement from equilibrium position; x,, amplitude of
oscillations; k, elastic coefficient, N, number of oscillations after which amplitude of oscillations decreases
twofold; ;, dimensionless displacement; n, dimensionless velocity; Q, dimensionless parameter; T, period of
oscillations; 7, dimensionless time; 1/, = 27N; &, &, intermediate values of{.;y = n%/2; Q, portion of volume

Mo
of suspension occupied by solid phase; £, porosity of bed; f, coefficient of nonsphericity; o= =125 — a1 — enf—11/8
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METHODS OF EXAMINING BEAM DIFFUSION IN AN
ABSORBING AND SCATTERING MATERIAL

S. G. Il'yasov, V. V, Krasnikov, UDC 536.3
and E. P. Tyurev

An apparatus and method are presented for measuring the effective cross section of a radiation
beam subject to reflection and transmission by layers of absorbing and scattering material.

Recent methods of measuring spectral characteristics for scattering materials subject to directional
irradiation have made it necessary to make a detailed study of the propagation of a narrow parallel radiation
beam in such a material; a particular feature here is that the beam is rapidly transformed to a purely diffuse
beam on account of repeated scattering at optical nonuniformities {1-4]. The beam cross section increases
considerably, and the multiple scattering makes a major contribution to the increase in cross section.

A study has been made [2] of the propagation of a narrow beam of light in a turbid medium having a
highly elongated scattering indicatrix, and an analytical expression was derived for the effective radius of the
beam rgf in relation to the optical thickness, Results have been reported [3] on the radial dependence of the
flux density after passage through small Lucite spheres (the measurements were made with the photocell and
set of celluloid screens). Screens coated with graphite had clear rings of internal radius up to 6 mm. The
main disadvantage of this method, which introduces an uncorrected error, is that the sensitivity of the photo-~
cell varies from part to part. On the other hand, these results [3] do define the radial dependence of the flux
density. So far as we are aware, no study has been made of the radial dependence of the flux density for
reflected fluxes,

We have examined this topic by means of special equipment whose major components were an adjustable
iris diaphragm and a photometric sphere (Fig. 1).

The iris diaphragm had blackened metal blades of thickness 0.2 mm and allowed us to alter the diameter
of the back-scattered and transmitted beam from 3 to 40 mm. The two fluxes were measured for a variety of
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